Web - based Supplementary Materials for “ A Note on MAR , Identifying Restrictions , Model Comparison , and Sensitivity Analysis in Pattern Mixture Models With and Without Covariates for Incomplete Data

نویسندگان

  • Chenguang Wang
  • Michael Daniels
چکیده

for all j ≥ 2 and k < j. These conditionals are normal distributions since we assume Y |S is multivariate normal. Suppose that there exists j such that ps(yj|yj−1) is not the same for all s ≥ j. Then from (1), p≥j(yj|yj−1) will be a mixture of normals whereas pk(yj|yj−1) will be a normal distribution. Thus, Molenbergh’s condition will not be satisfied, i.e. the MAR constraints do not exist. On the other hand, if for all 1 < j < J , the conditional distributions ps(yj|yj−1) are identical for s ≥ j, then pk(yj|yj−1) and p≥j(yj|yj−1) are both normally distributed and the identification restrictions pk(yj|yj−1) = p≥j(yj|yj−1) will result in MAR. Corollary 1 Proof: Since Y1 is always observed (by assumption), S|Y ' S|Y1 implies that S|Y mis,Y obs ' S|Y obs, where Y mis and Y obs denote the missing and observed data respectively. This shows that MAR holds. On the other hand, MAR implies that

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on MAR, identifying restrictions, model comparison, and sensitivity analysis in pattern mixture models with and without covariates for incomplete data.

Pattern mixture modeling is a popular approach for handling incomplete longitudinal data. Such models are not identifiable by construction. Identifying restrictions is one approach to mixture model identification (Little, 1995, Journal of the American Statistical Association 90, 1112-1121; Little and Wang, 1996, Biometrics 52, 98-111; Thijs et al., 2002, Biostatistics 3, 245-265; Kenward, Molen...

متن کامل

Pattern-Mixture model of the Cox proportional hazards model with missing binary covariates

When fitting the Cox proportional hazards model with missing covariates, it is inefficient to exclude observations with missing values in the analysis. Furthermore, if the missing-data mechanism is not Missing Completely At Random (MCAR), it may lead to biased parameter estimation. Many approaches have been suggested to handle the Cox proportional hazards model when covariates are sometimes mis...

متن کامل

A new parameterization for pattern mixture models oflongitudinal data with informative dropoutMichael

Pattern mixture models are frequently used to analyze longitudinal data where missingness is induced by dropout. For measured responses, it is typical to model the complete data as a mixture of multivariate normal distributions, where mixing is done over the dropout distribution. Fully parameterized pattern mixture models are not identiied by incomplete data; Little (1993) has characterized sev...

متن کامل

Marginal Analysis of A Population-Based Genetic Association Study of Quantitative Traits with Incomplete Longitudinal Data

A common study to investigate gene-environment interaction is designed to be longitudinal and population-based. Data arising from longitudinal association studies often contain missing responses. Naive analysis without taking missingness into account may produce invalid inference, especially when the missing data mechanism depends on the response process. To address this issue in the ana...

متن کامل

مقایسه روش بیزی (Bayesian) و کلاسیک در برآرد پارامترهای مدل رگرسیون لجستیک با وجود مقادیر گمشده در متغیرهای کمکی

Background and Aim: Logistic regression is an analytic tool widely used in medical and epidemiologic research. In many studies, we face data sets in which some of the data are not recorded. A simple way to deal with such "missing data" is to simply ignore the subjects with missing observations, and perform the analysis on cases for which complete data are available. Materials and Methods: We c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010